Точка лагранжа l1 системы земля солнце. Космические аппараты в точках лагранжа системы земля-луна. Что представляют собой точки Лагранжа

Какую бы цель вы перед собой не ставили, какую бы миссию не планировали — одним из самых больших препятствий на вашем пути в космосе будет топливо. Очевидно, что какое-то его количество нужно уже для того, чтобы покинуть Землю. Чем больше груза требуется вывести за пределы атмосферы, тем больше нужно горючего. Но из-за этого ракета становится ещё тяжелее, и всё это превращается в замкнутый круг. Именно это мешает нам отправлять несколько межпланетных станций по разным адресам на одной ракете — на ней просто не хватит места для топлива. Однако ещё в 80-х годах прошлого века учёные нашли лазейку — способ путешествовать по Солнечной системе, почти не используя горючее. Он называется «Межпланетная транспортная сеть».

Нынешние способы космических полётов

Сегодня перемещение между объектами Солнечной системы, например, путешествие с Земли на Марс, обычно требует так называемого перелёта по эллипсу Гомана. Носитель запускается, а затем ускоряется до тех пор, пока не оказывается дальше орбиты Марса. Около красной планеты ракета притормаживает и начинает вращаться вокруг цели своего назначения. И для ускорения, и для торможения она сжигает много топлива, но при этом эллипс Гомана остаётся одним из самых эффективных способов перемещения между двумя объектами в космосе.

Эллипс Гомана- Дуга I — перелет с Земли на Венеру. Дуга II-перелет с Венеры на Марс Дуга III- возвращение с Марса на Землю.

Используются также и гравитационные маневры, которые могут быть ещё более эффективными. Совершая их, космический корабль ускоряется, используя силу притяжения крупного небесного тела. Прибавка в скорости получается очень значительной почти без использования горючего. Мы применяем эти маневры всякий раз, когда отправляем свои станции в далёкий путь от Земли. Однако если кораблю после гравитационного маневра нужно выйти на орбиту какой-то планеты, ему всё равно приходится замедляться. Вы, конечно, помните, что это требует топлива.

Ровно поэтому в конце прошлого века некоторые учёные решили подойти к решению проблемы с другой стороны. Они отнеслись к гравитации не как к праще, а как к географическому ландшафту, и сформулировали идею межпланетной транспортной сети. Входными и выходными трамплинами в неё стали точки Лагранжа — пять районов рядом с небесными телами, где гравитация и силы вращения приходят в равновесие. Они существуют в любой системе, в которой одно тело крутится вокруг другого, и без претензий на оригинальность пронумерованы от L1 до L5.

Если мы поместим космический корабль в точку Лагранжа, он будет висеть там бесконечно, так как гравитация не тянет его в одну сторону сильнее, чем в какую-либо другую. Однако не все эти точки, фигурально выражаясь, созданы равными. Некоторые из них стабильны — если вы, находясь внутри, сдвинетесь немного в сторону, гравитация вернёт вас на место — как мяч на дне горной долины. Другие точки Лагранжа нестабильны — стоит немного переместиться, и вас начнёт уносить оттуда. Объекты, находящиеся здесь, напоминают мяч на вершине холма — он будет держаться там, если хорошо установлен или если его там придерживают, но даже лёгкого ветерка хватает, чтобы он, набирая скорость, покатился вниз.

Холмы и долины космического ландшафта

Космические корабли, летающие по Солнечной системе, учитывают все эти «холмы» и «долины» во время полёта и на стадии прокладки маршрута. Однако межпланетная транспортная сеть заставляет их работать на благо общества. Как вы уже знаете, у каждой стабильной орбиты имеется пять точек Лагранжа. Это и система Земля-Луна, и система Солнце-Земля, и системы всех спутников Сатурна с самим Сатурном… Можете продолжить сами, в конце концов, в Солнечной системе много чего вращается вокруг чего-то.

Точки Лагранжа везде и повсюду, хоть они и меняют постоянно своё конкретное местоположение в пространстве. Они всегда следуют по орбите за меньшим объектом системы вращения, и это создаёт постоянно меняющийся ландшафт гравитационных холмов и долин. Другими словами, распределение гравитационных сил в Солнечной системе со временем меняется. Иногда притяжение в тех или иных пространственных координатах направлено в сторону Солнца, в другой момент времени — в сторону какой-либо планеты, а бывает и так, что по ним проходит точка Лагранжа, и в этом месте воцаряется равновесие, когда никто никого никуда не тянет.

Метафора с холмами и долинами помогает нам лучше представить эту абстрактную идею, поэтому мы ещё несколько раз воспользуемся ею. Иногда в космосе происходит так, что один холм проходит рядом с другим холмом или другой долиной. Они могут даже накладываться друг на друга. И вот в этот самый момент космические перемещения становятся особенно эффективными. Например, если ваш гравитационный холм накладывается на долину, вы можете «скатиться» в неё. Если на ваш холм накладывается другой холм, вы можете перескочить с вершины на вершину.

Как использовать Межпланетную транспортную сеть?

Когда точки Лагранжа различных орбит приближаются друг к другу, не нужно почти никаких усилий, чтобы переместиться из одной в другую. Это значит, что если вы никуда не спешите и готовы подождать их сближения, то сможете перепрыгивать с орбиты на орбиту, например, по маршруту Земля-Марс-Юпитер и дальше, почти не тратя топлива. Легко понять, что именно эту идею использует Межпланетная транспортная сеть. Постоянно меняющаяся сеть точек Лагранжа похожа на извилистую дорогу, позволяющую перемещаться между орбитами с мизерным расходом горючего.

В научной среде эти перемещения из точки в точку называются низкозатратными переходными траекториями, и они уже были несколько раз использованы на практике. Одним из самых известных примеров является отчаянная, но успешная попытка спасения японской лунной станции в 1991 году, когда у космического аппарата было слишком мало топлива, чтобы завершить свою миссию традиционным способом. К сожалению, мы не можем использовать этот приём на регулярной основе, так как благоприятного совмещения точек Лагранжа можно ждать десятилетиями, столетиями, и даже дольше.

Но, если время не торопит, мы вполне можем позволить себе отправить в космос зонд, который будет спокойно дожидаться нужных совмещений, а всё остальное время собирать информацию. Дождавшись, он будет перескакивать на другую орбиту, и осуществлять наблюдения, находясь уже на ней. Этот зонд сможет путешествовать по Солнечной системе неограниченное количество времени, регистрируя всё, что происходит поблизости от него, и пополняя научный багаж человеческой цивилизации. Понятно, что это будет принципиально отличаться от того, как мы исследуем космос сейчас, но этот способ выглядит перспективно в том числе и для будущих долговременных миссий.

Проводились ли эксперименты по размещению космических аппаратов в точках Лагранжа системы Земля-Луна?

Несмотря на то, что о так называемых точках либрации, существующих в космосе, и об их удивительных свойствах человечеству известно достаточно давно, использовать их в практических целях начали лишь на 22-й год космической эры. Но вначале вкратце расскажем о самих чудо-точках.

Впервые теоретически они были обнаружены Лагранжем (чье имя теперь и носят), как следствие решения так называемой задачи трех тел. Ученому удалось определить, где в пространстве могут находиться точки, в которых равнодействующая всех внешних сил обращается в ноль.

Точки делятся на устойчивые и неустойчивые. Устойчивые принято обозначать L 4 и L 5 . Они располагаются в одной плоскости с основными двумя небесными телами (в данном случае - Землей и Луной), образуя с ними два равносторонних треугольника, за что их часто еще называют треугольными. В треугольных точках космический аппарат может находиться сколь угодно долго. Если же даже он отклонится в сторону, действующие силы все равно вернут его к положению равновесия. Космический аппарат словно попадает в гравитационную воронку, как бильярдный шар в лузу.

Однако, как мы сказали, существуют еще и неустойчивые точки либрации. В них космический аппарат, наоборот, находится словно на горе, являясь устойчивым лишь на самой ее вершине. Любое внешнее воздействие отклоняет его в сторону. Выйти в неустойчивую точку Лагранжа чрезвычайно сложно - для этого требуется сверхточная навигация. Поэтому аппарату приходится двигаться лишь вблизи самой точки по так называемой "гало-орбите", время от времени расходуя для ее поддержания топливо, правда, совсем немного.

В системе Земля-Луна неустойчивых точек три. Часто их еще называют прямолинейными, так как они расположены на одной линии. Одна из них (L 1) находится между Землей и Луной, в 58 тыс. км от последней. Вторая (L 2) - расположена так, что ее никогда не видно с Земли - она прячется за Луной в 65 тыс. км от нее. Последняя же точка (L 3), наоборот, никогда не видна с Луны, так как ее загораживает Земля, от которой до нее примерно 380 тыс. км.

Хотя находиться в устойчивых точках и выгоднее (не требуется расходовать горючее), космические аппараты все же пока познакомились лишь с неустойчивыми, вернее, только с одной из них, да и то относящейся к системе Солнце-Земля. Она находится внутри этой системы, в 1.5 млн. км от нашей планеты и так же как точка между Землей и Луной имеет обозначение L 1 . При взгляде с Земли она проецируется прямо на Солнце и может служить идеальным пунктом для слежения за ним.

Этой возможностью впервые воспользовался американский аппарат ISEE-3, запущенный 12 августа 1978 года. С ноября 1978 по июнь 1982 года он находился на "гало-орбите" вокруг точки Li, изучая характеристики солнечного ветра. По окончания этого срока именно ему, но уже переименованному в ICE, довелось стать первым в истории исследователем кометы. Для этого аппарат покинул точку либрации и, совершив несколько гравитационных маневров у Луны, в 1985 году осуществил пролет вблизи кометы Джакобини-Циннера. На следующий год он же исследовал комету Галлея, правда, только на дальних подступах.

Следующим посетителем точки L 1 системы Солнце-Земля стала европейская солнечная обсерватория SOHO, запущенная 2 декабря 1995 года и, к сожалению, недавно потерянная из-за ошибки управления. За время ее работы было получено не мало важной научной информации и сделано множество интересных открытий.

Наконец, последним на сегодняшний день аппаратом, выведенным в окрестности L 1 , стал американский аппарат АСЕ, предназначенный для изучения космических лучей и звездного ветра. Он стартовал с Земли 25 августа прошлого года и в настоящее время успешно проводит свои исследования.

А что же дальше? Существуют ли новые проекты, связанные с точками либрации? Безусловно, существуют. Так, в США принято предложение вице-президента А. Гора о новом запуске в направлении точки L 1 системы Солнце-Земля научно-образовательного аппарата "Триана", уже прозванного "Камерой Гора".

В отличие от своих предшественников он будет следить не за Солнцем, а за Землей. Наша планета из этой точки видна всегда в полной фазе и поэтому очень удобна для наблюдений. Ожидается, что картинки, полученные "Камерой Гора", будут практически в реальном времени поступать в сеть Интернет, и к ним будет открыт доступ для всех желающих.

Существует и российский "либрационный" проект. Это аппарат "Реликт-2", предназначенный для сбора информации о реликтовом излучении. Если для этого проекта найдется финансирование, то его ждет точка либрации L 2 в системе Земля-Луна, то есть та, что спрятана за Луной.

> Точки Лагранжа

Как выглядят и где искать точки Лагранжа в космосе: история обнаружения, система Земля и Луна, 5 L-точек системы двух массивных тел, влияние гравитации.

Будем откровенны: мы застряли на Земле. Стоит поблагодарить гравитацию за то, что нас не выкинуло в космическое пространство и мы можем ходить по поверхности. Но чтобы вырваться, приходится прикладывать огромное количество энергии.

Однако, во Вселенной есть определенные регионы, где умная система сбалансировала гравитационное влияние. При правильном подходе это можно использовать для более продуктивного и быстрого освоения пространства.

Эти места называют точками Лагранжа (L-точки). Наименование получили от Жозефа Луи Лагранжа, который описал их в 1772 году. Фактически, ему удалось расширить математику Леонарда Ейлера. Ученый первым открыл три таких точки, а Лагранж заявил о следующих двух.

Точки Лагранжа: О чем идет речь?

Когда вы располагаете двумя массивными объектами (например, Солнце и Земля), то их гравитационный контакт замечательно сбалансирован в конкретных 5 участках. В каждом из них можно расположить спутник, который будет удерживаться на месте при минимальных усилиях.

Наиболее примечательная – первая точка Лагранжа L1, сбалансированная между гравитационным притяжением двух объектов. Например, можно установить спутник над поверхностью Луны. Земная тяжесть вталкивает его в Луну, но сила спутника также сопротивляется. Так что аппарату не придется тратить много топлива. Важно понимать, что эта точка есть между всеми объектами.

L2 находится на одной линии с массой, но с другой стороны. Почему же объединенная гравитация не притягивает спутник к Земле? Все дело в орбитальных траекториях. Спутник в точке L2 расположится на более высокой орбите и отстает от Земли, так как перемещается вокруг звезды медленнее. Но земная гравитация подталкивает его и помогает закрепиться на месте.

L3 искать нужно на противоположной стороне от системы. Гравитация между объектами стабилизируется и аппарат с легкостью маневрирует. Такой спутник всегда закрывался бы Солнцем. Стоит отметить, что три описанные точки не считаются устойчивыми, потому любой спутник рано или поздно отклонится. Так что без рабочих двигателей там делать нечего.

Есть также L4 и L5, расположенные спереди и сзади нижнего объекта. Между массами создается равносторонний треугольник, одной из сторон которого будет L4. Если перевернете вверх ногами, то получите L5.

Последние две точки считают стабильными. Это подтверждают найденные астероиды на крупных планетах, вроде Юпитера. Это троянцы, попавшие в гравитационную ловушку между гравитациями Солнца и Юпитера.

Как использовать такие места? Важно понимать, что существует множество разновидностей космического освоения. Например, в точках Земля-Солнце и Земля-Луна уже расположены спутники.

Солнце-Земля L1 – прекрасное место для проживания солнечного телескопа. Аппарат максимально подошел к звезде, но не теряет связи с родной планетой.

В точке L2 планируют разместить будущий телескоп Джеймса Уэбба (в 1.5 миллионах км от нас).

Земля-Луна L1 – отличная точка для лунной станции по дозаправке, которая позволяет экономить на доставке топлива.

Наиболее фантастической идеей будет желание поставить в L4 и L5 космическую станцию Остров III, потому что там она была бы абсолютной стабильной.

Давайте все же поблагодарим гравитацию и ее диковинное взаимодействие с другими объектами. Ведь это позволяет расширить способы освоения пространства.

Когда Жозеф Луи Лагранж работал над задачей двух массивных тел (ограниченной задачей трёх тел), он обнаружил, что в такой системе существует 5 точек, обладающих следующим свойством: если в них расположены тела пренебрежимо малой массы (относительно массивных тел), то эти тела будет неподвижны относительно тех двух массивных тел. Важный момент: массивные тела должны вращаться вокруг общего центра масс, если же они каким-то образом будут просто покоиться, то вся эта теория тут неприменима, сейчас поймете, почему.

Самым удачным примером, конечно же, является Солнце и Земля, их и рассмотрим. Первые три точки L1, L2, L3 находятся на линии, соединяющей центры масс Земли и Солнца.

Точка L1 находится между телами (ближе к Земле). Почему она есть? Представьте, что между Землей и Солнцем какой нибудь маленький астероид, который вращается вокруг Солнца. Как правило, у тел внутри земной орбиты частота обращения выше, чем у Земли (но не обязательно) Так вот, если у нашего астероида частота обращения выше, то он время от времени будет пролетать мимо нашей планеты, и она будет тормозить его своей гравитацией, и в конце концов частота обращения астероида станет такой же, как и у Земли. Если же у Земли частота обращения больше, то она, пролетая время от времени мимо астероида будет тянуть его за собой и разгонять и результат тот же: частоты обращения Земли и астероида сравняются. Но такое возможно только если орбита астероида проходит через точку L1.

Точка L2 находится за Землей. Может показаться, что наш воображаемый астероид в этой точке должен притягиваться к Земле и Солнцу, так как они оказались с одной стороны от него, но нет. Не забывайте, что система вращается, и благодаря этому центробежная сила, действующая на астероид, уравнивается гравитационными силами Земли и Солнца. У тел за пределами земной орбиты, в основном, частота обращения меньше, чем у Земли (опять же, не всегда). Так что суть та же: орбита астероида проходит через L2 и Земля, время от времени пролетая мимо, тянет астероид за собой, в конечном счете уравнивая частоту его обращения со своей.

Точка L3 находится за Солнцем. Помните, раньше у фантастов была такая мысль, что с той стороны Солнца находится ещё одна планета, типа Противоземля? Так вот, точка L3 находится почти там, но чуть-чуть подальше от Солнца, а не ровно на земной орбите, так как центр масс системы "Солнце-Земля" не совпадает с центром масс Солнца. С частотой обращения астероида в точке L3 всё очевидно, она должна быть такой же как у Земли; если будет меньше, астероид упадет на Солнце, если больше - улетит. Кстати, данная точка самая не устойчивая, её шатает из-за влияния других планет, особенно Венеры.

L4 и L5 расположены на орбите, которая чуть больше Земной, причём следующим образом: представьте, что из центра масс системы "Солнце-Земля" мы провели луч к Земле и другой луч, так чтобы угол между этими лучами был 60 градусов. Причем в обе стороны, то есть против часовой стрелки и по ней. Так вот, на одном таком луче находиться L4, а на другом L5. L4 будет перед Землей по ходу движения, то есть как бы убегать от Земли, а L5, соответственно, догонять Землю. Расстояния от любой из этих точек до Земли и до Солнца одинаковы. Теперь, вспомнив закон всемирного тяготения, замечаем, что сила притяжения пропорциональна массе, а значит наш астероид в L4 или L5 будет притягиваться к Земле во столько раз слабее, во сколько Земля легче Солнца. Если чисто геометрически построить векторы этих сил, то их равнодействующая будет направлена ровно на барицентр (центр масс системы "Солнце-Земля"). Солнце с Землей вращаются вокруг барицентра с одинаковой частотой, с той же частотой будут вращаться и астероиды в L4 и L5. L4 называют греками, а L5 - троянцами в честь троянских астероидов Юпитера (подробнее на Вики).

Со стороны двух первых тел, может оставаться неподвижным относительно этих тел.

Более точно точки Лагранжа представляют собой частный случай при решении так называемой ограниченной задачи трёх тел - когда орбиты всех тел являются круговыми и масса одного из них намного меньше массы любого из двух других. В этом случае можно считать, что два массивных тела обращаются вокруг их общего центра масс с постоянной угловой скоростью . В пространстве вокруг них существуют пять точек, в которых третье тело с пренебрежимо малой массой может оставаться неподвижным во вращающейся системе отсчёта, связанной с массивными телами. В этих точках гравитационные силы, действующие на малое тело, уравновешиваются центробежной силой .

Точки Лагранжа получили своё название в честь математика Жозефа Луи Лагранжа , который первым в 1772 году привёл решение математической задачи, из которого следовало существование этих особых точек.

Все точки Лагранжа лежат в плоскости орбит массивных тел и обозначаются заглавной латинской буквой L с числовым индексом от 1 до 5. Первые три точки расположены на линии, проходящей через оба массивных тела. Эти точки Лагранжа называются коллинеарными и обозначаются L 1 , L 2 и L 3 . Точки L 4 и L 5 называются треугольными или троянскими. Точки L 1 , L 2 , L 3 являются точками неустойчивого равновесия, в точках L 4 и L 5 равновесие устойчивое.

L 1 находится между двумя телами системы, ближе к менее массивному телу; L 2 - снаружи, за менее массивным телом; и L 3 - за более массивным. В системе координат с началом отсчёта в центре масс системы и с осью, направленной от центра масс к менее массивному телу, координаты этих точек в первом приближении по α рассчитываются с помощью следующих формул :

Точка L 1 лежит на прямой, соединяющей два тела с массами M 1 и M 2 (M 1 > M 2), и находится между ними, вблизи второго тела. Её наличие обусловлено тем, что гравитация тела M 2 частично компенсирует гравитацию тела M 1 . При этом чем больше M 2 , тем дальше от него будет располагаться эта точка.

Лунная точка L 1 (в системе Земля - Луна ; удалена от центра Земли примерно на 315 тыс.км ) может стать идеальным местом для строительства космической пилотируемой орбитальной станции , которая, располагаясь на пути между Землёй и Луной, позволила бы легко добраться до Луны с минимальными затратами топлива и стать ключевым узлом грузового потока между Землёй и её спутником .

Точка L 2 лежит на прямой, соединяющей два тела с массами M 1 и M 2 (M 1 > M 2), и находится за телом с меньшей массой. Точки L 1 и L 2 располагаются на одной линии и в пределе M 1 ≫ M 2 симметричны относительно M 2 . В точке L 2 гравитационные силы, действующие на тело, компенсируют действие центробежных сил во вращающейся системе отсчёта.

Точка L 2 в системе Солнце - Земля является идеальным местом для строительства орбитальных космических обсерваторий и телескопов. Поскольку объект в точке L 2 способен длительное время сохранять свою ориентацию относительно Солнца и Земли, производить его экранирование и калибровку становится гораздо проще. Однако эта точка расположена немного дальше земной тени (в области полутени) [прим. 1] , так что солнечная радиация блокируется не полностью. На гало-орбитах вокруг этой точки на данный момент (2020 год) находятся аппараты Gaia и Спектр-РГ . Ранее там действовали такие телескопы как «Планк » и «Гершель» , в дальнейшем туда планируется направить ещё несколько телескопов, включая Джеймс Уэбб (в 2021 году).

Точка L 2 в системе Земля-Луна может быть использована для обеспечения спутниковой связи с объектами на обратной стороне Луны, а также быть удобным местом для размещения заправочной станции для обеспечения грузопотока между Землёй и Луной

Если M 2 много меньше по массе, чем M 1 , то точки L 1 и L 2 находятся на примерно одинаковом расстоянии r от тела M 2 , равном радиусу сферы Хилла :

Точка L 3 лежит на прямой, соединяющей два тела с массами M 1 и M 2 (M 1 > M 2 ), и находится за телом с бо́льшей массой. Так же, как для точки L 2 , в этой точке гравитационные силы компенсируют действие центробежных сил.

До начала космической эры среди писателей-фантастов была очень популярна идея о существовании на противоположной стороне земной орбиты в точке L 3 другой аналогичной ей планеты, называемой «Противоземлёй », которая из-за своего расположения была недоступна для прямых наблюдений. Однако на самом деле из-за гравитационного влияния других планет точка L 3 в системе Солнце - Земля является крайне неустойчивой. Так, во время гелиоцентрических соединений Земли и Венеры по разные стороны Солнца, которые случаются каждые 20 месяцев , Венера находится всего в 0,3 а.е. от точки L 3 и таким образом оказывает очень серьёзное влияние на её расположение относительно земной орбиты. Кроме того, из-за несбалансированности [прояснить ] центра тяжести системы Солнце - Юпитер относительно Земли и эллиптичности земной орбиты, так называемая «Противоземля» всё равно время от времени была бы доступна для наблюдений и обязательно была бы замечена. Ещё одним эффектом, выдающим её существование, была бы её собственная гравитация: влияние тела размером уже порядка 150 км и более на орбиты других планет было бы заметно . С появлением возможности производить наблюдения с помощью космических аппаратов и зондов было достоверно показано, что в этой точке нет объектов размером более 100 м .

Орбитальные космические аппараты и спутники, расположенные вблизи точки L 3 , могут постоянно следить за различными формами активности на поверхности Солнца - в частности, за появлением новых пятен или вспышек, - и оперативно передавать информацию на Землю (например, в рамках системы раннего предупреждения о космической погоде NOAA). Кроме того, информация с таких спутников может быть использована для обеспечения безопасности дальних пилотируемых полётов, например к Марсу или астероидам. В 2010 году были изучены несколько вариантов запуска подобного спутника

Если на основе линии, соединяющей оба тела системы, построить два равносторонних треугольника, две вершины которых соответствуют центрам тел M 1 и M 2 , то точки L 4 и L 5 будут соответствовать положению третьих вершин этих треугольников, расположенных в плоскости орбиты второго тела в 60 градусах впереди и позади него.

Наличие этих точек и их высокая стабильность обусловливается тем, что, поскольку расстояния до двух тел в этих точках одинаковы, то силы притяжения со стороны двух массивных тел соотносятся в той же пропорции, что их массы, и таким образом результирующая сила направлена на центр масс системы; кроме того, геометрия треугольника сил подтверждает, что результирующее ускорение связано с расстоянием до центра масс той же пропорцией, что и для двух массивных тел. Так как центр масс является одновременно и центром вращения системы, результирующая сила точно соответствует той, которая нужна для удержания тела в точке Лагранжа в орбитальном равновесии с остальной системой. (На самом деле, масса третьего тела и не должна быть пренебрежимо малой). Данная треугольная конфигурация была обнаружена Лагранжем во время работы над задачей трёх тел . Точки L 4 и L 5 называют треугольными (в отличие от коллинеарных).

Также точки называют троянскими : это название происходит от троянских астероидов Юпитера , которые являются самым ярким примером проявления этих точек. Они были названы в честь героев Троянской войны из «Илиады » Гомера , причём астероиды в точке L 4 получают имена греков, а в точке L 5 - защитников Трои ; поэтому их теперь так и называют «греками» (или «ахейцами ») и «троянцами».

Расстояния от центра масс системы до этих точек в координатной системе с центром координат в центре масс системы рассчитываются по следующим формулам:

Тела, помещённые в коллинеарных точках Лагранжа, находятся в неустойчивом равновесии. Например, если объект в точке L 1 слегка смещается вдоль прямой, соединяющей два массивных тела, сила, притягивающая его к тому телу, к которому оно приближается, увеличивается, а сила притяжения со стороны другого тела, наоборот, уменьшается. В результате объект будет всё больше удаляться от положения равновесия.

Такая особенность поведения тел в окрестностях точки L 1 играет важную роль в тесных двойных звёздных системах . Полости Роша компонент таких систем соприкасаются в точке L 1 , поэтому, когда одна из звёзд-компаньонов в процессе эволюции заполняет свою полость Роша, вещество перетекает с одной звезды на другую именно через окрестности точки Лагранжа L 1 .

Несмотря на это, существуют стабильные замкнутые орбиты (во вращающейся системе координат) вокруг коллинеарных точек либрации, по крайней мере, в случае задачи трёх тел. Если на движение влияют и другие тела (как это происходит в Солнечной системе), вместо замкнутых орбит объект будет двигаться по квазипериодическим орбитам, имеющим форму фигур Лиссажу . Несмотря на неустойчивость такой орбиты,